ir33 platform

conexiones / connections
ir33
ir33 power
ir33 DIN
powercompact
powercompact small
mastercella

(ES) Manual del usuario
 (GB) User manual

User manual

We wish to save you time and money! We can assure you that the thorough reading tion and safe use of the product described.

CAREL bases the development of its products on decades of experience in HVAC, on the continuous investments in technological innovations to products, procedures and strict quality processes with in-circuit and functional testing on 100% of its products, and on the most innovative production technology available on the market.
CAREL and its subsidiaries nonetheless cannot guarantee that all the aspects of the product and the software included with the product respond to the requirements of the final application, despite the product being developed according to start-of-the-art techniques. The customer (manufacturer, developer or installer of the final equipment) accepts all liability and risk relating to the configuration of the product in order to reach the expected results in relation to the specific final installation and/or equipment. CAREL may, based on specific agreements, acts as a consultant for the positive commissioning of the final unit/application, however in no case does it accept liability for the correct operation of the final equipment/system.
The CAREL product is a state-of-the-art product, whose operation is specified in the technical documentation supplied with the product or can be downloaded, even prior to purchase, from the website www. carel.com.
Each CAREL product, in relation to its advanced level of technology, requires setup/configuration/programming/commissioning to be able to operate in the best possible way for the specific application. The failure to complete such operations, which are required/indicated in the user manual, may cause the final product to malfunction; CAREL accepts no liability in such cases.
Only qualified personnel may install or carry out technical service on the product.
The customer must only use the product in the manner described in the documentation relating to the product.
In addition to observing any further warnings described in this manual, the following warnings must be heeded for all CAREL products:

- Prevent the electronic circuits from getting wet. Rain, humidity and all types of liquids or condensate contain corrosive minerals that may damage the electronic circuits. In any case, the product should be used or stored in environments that comply with the temperature and humidity limits specified in the manual.
- Do not install the device in particularly hot environments. Too high temperatures may reduce the life of electronic devices, damage them and deform or melt the plastic parts. In any case, the product should be used or stored in environments that comply with the temperature and humidity limits specified in the manual.
- Do not attempt to open the device in any way other than described in the manual.
- Do not drop, hit or shake the device, as the internal circuits and mechanisms may be irreparably damaged.
- Do not use corrosive chemicals, solvents or aggressive detergents to clean the device.
- Do not use the product for applications other than those specified in the technical manual.

All of the above suggestions likewise apply to the controllers, serial boards, programming keys or any other accessory in the CAREL product portfolio.

CAREL adopts a policy of continual development. Consequently, CAREL reserves the right to make changes and improvements to any product described in this document without prior warning.

The technical specifications shown in the manual may be changed without prior warning.
The liability of CAREL in relation to its products is specified in the CAREL general contract conditions, available on the website www.carel.com and/or by specific agreements with customers; specifically, to the extent where allowed by applicable legislation, in no case will CAREL, its employees or subsidiaries be liable for any lost earnings or sales, losses of data and information, costs of replacement goods or services, damage to things or people, downtime or any direct, indirect, incidental, actual, punitive, exemplary, special or consequential damage of any kind whatsoever, whether contractual, extra-contractual or due to negligence, or any other liabilities deriving from the installation, use or impossibility to use the product, even if CAREL or its subsidiaries are warned of the possibility of such damage.

Disposing of the parts of the controller:
The controller is made up of metal and plastic parts and a lithium battery. All these parts must be disposed of separately in compliance with the local standards in force on waste disposal.

Contents

1. POWERCOMPACT 7
1.1 Dimensions7
1.2 Electrical specifications 7
1.3 Electrical connections. 9
2. POWERCOMPACT SMALL 10
2.1 Dimensions. 10
2.2 Electrical specifications 10
1.3 Electrical connections 12
3. MASTERCELLA 2 13
3.1 Dimensions 13
3.2 Technical specifications 13
3.3 Electrical connections. 14
4. IR33 16
4.1 Dimensions16
4.2 Electrical specifications.
16
4.3 Electrical connections 18
5. IR33POWER 20
5.1 Dimensions. 20
5.2 Electrical specifications. 20
5.3 Electrical connections. 22
6. IR33 2HP 23
6.1 Dimensions. 23
6.2 Technical specifications 23
6.3 Electrical connections
25
7. IR33DIN
6.1 Dimensions 25
6.2 Electrical specifications 25
6.3 Electrical connections. 27

1.1 Dimensions

Appearance and ergonomics:
The appearance has been designed to fit in harmoniously with the new lines of the refrigeration units.
The main characteristic is its compactness: the dimensions are in fact $167 \times 36 \times 75 \mathrm{~mm}$ in the standard version.

POWER COMPACT WIDE

(1)

Fig. 1.a
Key:

1. drilling template $138.5 \times 29 \mathrm{~mm}$;
2. faston (spade) version +8 mm

1.2 Electrical specifications

5 A (*)	EN60730-1: UL 873:	$\begin{aligned} & 250 \mathrm{~V} \sim 5(1) \mathrm{A} ; \\ & 250 \mathrm{~V} \sim 5 \text { ~ } \mathrm{res} \text { 1FLA 6LRA C300; } \end{aligned}$	100,000 operating cycles 30,000 operating cycles
8 A (*)	EN60730-1: UL 873:	$250 \mathrm{~V} \sim 8$ (4) on N.O., 6 (4) on N.C., 2 (2) on N.O. and N.C.; $250 \mathrm{~V} \sim 8 \mathrm{~A}$ res 2FLA 12LRA C300;	100,000 operating cycles 30,000 operating cycles
$16 \mathrm{~A}\left({ }^{*}\right)$	$\begin{aligned} & \text { EN60730- } \\ & \text { UL 873: } \end{aligned}$	$250 \mathrm{~V} \sim 10$ (4) A up to $60^{\circ} \mathrm{C}$ on N.O., 12 (2) A on N.O. and N.C $250 \mathrm{~V} \sim 12 \mathrm{~A}$ res 5FLA 30LRA C300;	;100,000 operating cycles 30,000 operating cycles
2 HP	EN60730-1: UL 873:	$\begin{aligned} & 250 \mathrm{~V} \sim 10(10) \mathrm{A} ; \\ & 250 \mathrm{~V} \sim 12 \mathrm{~A} \text { res 12FLA 72LRA; } \end{aligned}$	100,000 operating cycles 30,000 operating cycles

${ }^{*}$): Relay not suitable for fluorescent loads (neon lights, ...) that use starters (ballasts) with phase-shift capacitors. Fluorescent lamps with electronic control devices or without phase-shift capacitors can be used, within the operating limits specified for each type of relay. insulation from very low voltage parts reinforced; 6 mm air, 8 mm surface; 3750 V insulation insulation between the relay outputs basic; 3 mm air, 4 mm surface; 1250 V insulation

Connections	Type of connection fixed screw plug-in for screw blocks spade with crimped contact	Cross-sections for cables from 0.5 to $2.5 \mathrm{~mm}^{2}$	Maximum current 12A
	The correct sizing of the power and connection cables between the instrument and the loads is the responsibility of the installer. In the max load and max operating temp. conditions, the cables used must be suitable for operation up to $105^{\circ} \mathrm{C}$.		
Case	plastic: dimensions $36 \times 167 \times 75 \mathrm{~mm}$; moun	4 mm	
Assembly	smooth, hard and indeformable panel: using screws from the front		
	drilling template: dimensions $29 \times 138.5 \mathrm{~mm}$; distance between fastening screws 153.5 mm		
	fastening screws: countersunk head with maximum thread diameter 3.9 mm		
Wide vers. case (power supply E, A, H, O)	plastic	dimensions: $39.4 \times 183 \times 75$ mounting depth 63 mm	
Assembly	smooth, hard and indeformable panel	using screws from the front or brack	
(power supply $\mathrm{E}, \mathrm{A}, \mathrm{H}, \mathrm{O}$) Wide versions	drilling template	dimensions: from 138.5×29 to 150 distance between fastening screw	or 153.5
Display	digits: 3 digit LED		
	display: from -99 to 999		
	operating status: indicated with graphic icons on the display		
Keypad	8 silicone rubber buttons		
Infrared receiver	available depending on the model		
Clock with backup battery	available depending on the model		
Buzzer	available in all models		
Fastening screws	countersunk with maximum thread diameter 3.9 mm for 165 mm spacing; for 153 spacing, flat head with maximum thread diameter 3 mm		
Clock	Error at $25^{\circ} \mathrm{C}$: $\quad \pm 10 \mathrm{ppm}$ ($\pm 5.3 \mathrm{~min} / \mathrm{year}$)		
	Error in the temperature range -10T60 ${ }^{\circ} \mathrm{C}$: $\quad-50 \mathrm{ppm}(-27 \mathrm{~min} /$ year $)$		
	Ageing: $< \pm 5 \mathrm{p} \mathrm{pm}(\pm 2.7 \mathrm{~min} / \mathrm{year})$		
	Discharge time: typically 6 months (8 months maximum)		
	Recharge time: typically 5 hours (<8 hours maximum)		
Operating conditions	$-10 \mathrm{~T} 65^{\circ} \mathrm{C} ;<90 \%$ relative humidity non-condensing		
Storage conditions	$-20 \mathrm{~T} 70^{\circ} \mathrm{C} ;<90 \%$ relative humidity non-condensing		
Front panel index of protection	assembly on smooth and indeformable panel with IP65 gasket		
Environmental pollution	2, normal situation		
PTI of insulating materials	printed circuits 250, plastic and insulating materials 175		
Period of stress across the insulating parts	long		
Category of resistance to fire	category D and category B (UL 94-V0)		
Class of protection against voltage surges	category II		
Type of action and disconnection	1B relay contacts (micro-disconnection)		
Construction of the control device	electronic control device incorporated		
Classification according to protection against electric shock	class II when appropriately integrated		
Device designed to he hand-held or integrated into equipment designed to be hand-held	no		
Software class and structure	class A		
Cleaning the front panel of the instrument	only use neutral detergents and water		
Serial interface for CAREL network	External, available in all models		
Interface for repeater display	External, available in models with H and 0 power supplies		
Maximum distance between interface and display	10 m		
Programming key	Available in all models		
	fastening screws	countersunk head with maximum flat head for 153 mm spacing, m	meter 3.9 mm for 165 ead diameter 3 mm

1.3 Electrical connections

PB00S*E(N,R,C,B)* ${ }^{*}$
 PB00S*E(A,M,L,T)* ${ }^{\text {O }}$

PANEL MOUNTING IP65 USE COPPER CONDUCTORS ONLY

PB00Y*E(N,R,C,B)* ${ }^{*}$

PANEL MOUNTING IP65 USE COPPER CONDUCTORS ONLY

PB00F*E(N,R,C,B)*0

PANEL MOUNTING IP65 USE COPPER CONDUCTORS ONLY

PB00F*H(A,M,L,T)* ${ }^{*}$

PANEL MOUNTING IP65 USE COPPER CONDUCTORS ONLY

PB00C* ${ }^{*}(\mathbf{N}, \mathrm{R}, \mathrm{C}, \mathrm{B},)^{*} \mathbf{0}$

PANEL MOUNTING IP65 USE COPPER CONDUCTORS ONLY

PB00H*H(N,R,C,B)*

PANEL MOUNTING IP65 USE COPPER CONDUCTORS ONLY

Fig. 1.b

2.1 Dimensions

Appearance and ergonomics:
WIDE

STANDARD

Key:

1. drilling template standard models $138.5 \times 29 \mathrm{~mm}$. wide models from $138,5 \times 29 \mathrm{~mm}$ to $150 \times 31 \mathrm{~mm}$

Fig. 2.a

2.2 Electrical specifications

Case	plastic: dimensions 36x167×51 mm; mounting depth 40 mm
Assembly	smooth, hard and indeformable panel: using screws from the front
	drilling template: dimensions $29 \times 138.5 \mathrm{~mm}$; distance between fastening screws 153.5 mm
	fastening screws: countersunk head with maximum thread diameter 3.9 mm
Wide vers. case (power supply S)	plasticdimensions: $39.4 \times 183 \times 45$ mounting depth 40 mm
Assembly	smooth, hard and indeformable panel using screws from the front or brackets
(power supply S) Wide versions	drilling template dimensions: from 138.5×29 to 150×31 distance between fastening screws: 165 mm or 153.5 countersunk head with maximum thread diameter 3.9 mm for 165 mm spacing fastening screws head for 153 mm spacing, maximum thread diameter 3 mm
Display	digits: 3 digit LED
	display: from -99 to 999
	operating status: indicated with graphic icons on the display
Keypad	8 silicone rubber buttons
Infrared receiver	available depending on the model
Clock with backup battery	available depending on the model
Buzzer	available in all models
Clock	Error at $25^{\circ} \mathrm{C}$: $\quad \pm 10 \mathrm{ppm}(\pm 5.3 \mathrm{~min} /$ year $)$
	Error in the temperature range $-10 \mathrm{~T} 60^{\circ} \mathrm{C}$: $\quad-50 \mathrm{ppm}(-27 \mathrm{~min} /$ year $)$
	Ageing: $< \pm 5 \mathrm{p} \mathrm{pm}(\pm 2.7 \mathrm{~min} / \mathrm{year})$
	Discharge time: typically 6 months (8 months maximum)
	Recharge time: typically 5 hours (<8 hours maximum)
Operating conditions	$-10 \mathrm{~T} 65^{\circ} \mathrm{C}$; $<90 \%$ relative umidity non-condensing
Storage conditions	$-20770^{\circ} \mathrm{C} ;<90 \%$ relative umidity non-condensing
Front panel index of protection	assembly on smooth and indeformable panel with IP65 gasket
Environmental pollution	2, normal situation
PTI of insulating materials	printed circuits 250, plastic and insulating materials 175
Period of stress across the insulating parts	long
Category of resistance to fire	category D and category B (UL 94-V0)
Class of protection against voltage surges	category II
Type of action and disconnection	1B relay contacts (micro-disconnection)
Construction of the control device	electronic control device incorporated
Classification according to protection against electric shock	to be integrated into class I appliances
Device designed to he hand-held or integrated into equipment designed to be hand-held	no
Software class and structure	class A
Cleaning the front panel of the instrument	only use neutral detergents and water
Serial interface for CAREL network	External, available in all models
Interface for repeater display	External, available in all models
Maximum distance between interface and display	10 m
Programming key	Available in all models

PBOOS*S(N,R,C,B)*0

PB00S*S(A,M,L,T)*0

PB00Y*S(N,R,C,B)*0

PB00Y*S(A,M,L,T)*0

PB00F*S(N,R,C,B)*0

PBOOC*S(N,R,C,B)*0

3.1 Dimensions

Fig. 3.a
3.2 Technical specifications

Case	plastic: dimensions 200×240x93 mm; mounting depth 64 mm
	open main board and front panel: base dimensions $178 \times 86 \times 40 \mathrm{~mm}$; front panel dimensions $100 \times 90 \times 12 \mathrm{~mm}$
Assembly	wall mounting (with plastic case): using fastening screws; \quad spacing $162.5 \times 218.5 \mathrm{~mm}$
	panel installation (with plastic front panel): using fastening screws; spacing $159.5 \times 197.5 \mathrm{~mm}$
	open board: using fastening screws for main board and front panel
Display	digits: 3 digit LED
	display: from -99 to 999
	operating status: indicated with LEDs and graphic icons made in the polycarbonate label applied to the plastic case
Keypad	8 mechanical buttons, keypad made in the polycarbonate label applied to the plastic case
Infrared receiver	available depending on the model
Clock with backup battery	available depending on the model
Buzzer	available in all models
Clock	Error at $25^{\circ} \mathrm{C}$: $\quad \pm 10 \mathrm{ppm}(\pm 5.3 \mathrm{~min} / \mathrm{year})$
	Error in the temperature range -10T60 ${ }^{\circ} \mathrm{C}$: $\quad-50 \mathrm{ppm}(-27 \mathrm{~min} / \mathrm{year})$
	Ageing: $< \pm 5 \mathrm{ppm}$ ($\pm 2.7 \mathrm{~min} /$ year)
	Discharge time: typically 6 months (8 months maximum)
	Recharge time: typically 5 hours (<8 hours maximum)
Operating conditions	open board: $\quad-10 \mathrm{~T} 65^{\circ} \mathrm{C} ;<90 \% \mathrm{RH}$ non-condensing
	with plastic case: $-10 \mathrm{~T} 50^{\circ} \mathrm{C}$; <90\% RH non-condensing With the following current configurations: Relay 112 A, Relay 20 A, Relay 34 A, Relay 44 A, Relay 54 A Relay 10 A , Relay 212 A , Relay 34 A , Relay 44 A , Relay 54 A The currents indicated above will be reduced according to the relays used.
Storage conditions	$-20770{ }^{\circ} \mathrm{C}$; <90\% RH non-condensing
Front panel index of protection	with plastic case IP65 without disconnecting switch
	panel installation with plastic front panel IP54 with disconnecting switch
Environmental pollution	2, normal situation
PTI of insulating materials	printed circuits 250, plastic and insulating materials 175
Period of stress across the insulating parts	long
Category of resistance to fire	category D and category B (UL 94-V0)
Class of protection against voltage surges	category II
Type of action and disconnection	1B relay contacts (micro-disconnection)
Construction of the control device	electronic control device incorporated
Classification according to protection against electric shock	class II when appropriately integrated
Device designed to he hand-held or integrated into equipment designed to be hand-held	no
Software class and structure	class A
Cleaning the front panel of the instrument	only use neutral detergents and water
Serial interface for CAREL network	Built-in, available in all models, upon request
Interface for repeater display	Built-in, available in all models, upon request
Maximum distance between interface and display	10 m
Programming key	Available in all models

3.3 Electrical connections

Fig. 3.b

			Relè 1	Relè 2	Relè 5	
MD33A0***0	$\begin{array}{\|l} \text { EN60730-1 } \\ \text { UL } 873 \end{array}$	250 V	12(2) A 12A 5FLA 30LRA	$\begin{aligned} & \text { 8(2) A } \\ & \text { 8A 2FLA } \\ & \text { 30LRA } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 12(2) A } \\ & \text { 12A 5FLA } \\ & \text { 30LRA } \\ & \hline \end{aligned}$	-
$\overline{\text { MD33A1*** }}$	$\begin{aligned} & \text { EN60730-1 } \\ & \text { UL } 873 \end{aligned}$	250 V	$\begin{aligned} & \text { 10(10) A } \\ & \text { 12A 12FLA } \\ & \text { 72LRA } \end{aligned}$	8(4) A 8A 2FLA 12LRA	$\begin{aligned} & \text { 10(10) A } \\ & \text { 12A 12FLA } \\ & \text { 72LRA } \end{aligned}$	0
MD33A2***	$\begin{aligned} & \left\lvert\, \begin{array}{l} \text { EN60730-1 } \\ \text { UL } 873 \end{array}\right. \\ & \hline \end{aligned}$	250 V	$\begin{aligned} & \text { 12(10) A } \\ & \text { 12A 12FLA } \\ & \text { 72LRA 2hp } \end{aligned}$	8(4) A 8A 2FLA 12LRA	12(2) A 12A 5FLA 30LRA	7
MD33A3***0	$\begin{aligned} & \text { EN60730-1 } \\ & \text { UL } 873 \end{aligned}$	250 V	$\begin{aligned} & \text { 12(2) A } \\ & \text { 12A 5FLA } \\ & \text { 30LRA } \\ & \hline \end{aligned}$	8(4) A 8A 2FLA 12LRA	$\begin{aligned} & \text { 10(10) A } \\ & \text { 12A 12FLA } \\ & \text { 72LRA } \\ & \hline \end{aligned}$	
MD33A4***	$\begin{aligned} & \left\lvert\, \begin{array}{l} \text { EN60730-1 } \\ \text { UL } 873 \end{array}\right. \\ & \hline \end{aligned}$	250 V	$\begin{aligned} & \text { 10(10) A } \\ & \text { 12A 12FLA } \\ & \text { 72LRA } \end{aligned}$	8(4) A 8A 2FLA 12LRA	$\begin{aligned} & \text { 12(2) A } \\ & \text { 12A 5FLA } \\ & \text { 30LRA } \\ & \hline \end{aligned}$	
MD33A5***	$\begin{aligned} & \left\lvert\, \begin{array}{l} \text { EN60730-1 } \\ \text { UL } 873 \end{array}\right. \\ & \hline \end{aligned}$	250 V	$\begin{aligned} & \text { 12(10) A } \\ & \text { 12A 12FLA } \\ & \text { 72LRA 2hp } \end{aligned}$	8(4) A 8A 2FLA 12LRA	$\begin{aligned} & \text { 10(10) A } \\ & \text { 12A 12FLA } \\ & \text { 72LRA } \end{aligned}$	

Fig. 3.c

			Relè 1	Relè 2	Relè 3	Relè 4	Relè 5
MD33D0***0	$\begin{array}{\|l\|l\|} \hline \text { EN60730-1 } \\ \text { UL } 873 \end{array}$	250 V	12(2) A 12A 5FLA 30LRA	12(2) A 12A 5FLA 30LRA	$\begin{aligned} & \text { 8(4)A } \\ & \text { 8A 2FLA } \\ & \text { 12LRA } \\ & \hline \end{aligned}$	8(4)A 8A 2FLA 12LRA	$\begin{aligned} & \hline 12(2) \mathrm{A} \\ & \text { 12A 5FLA } \end{aligned}$ 30LRA
MD33D1***0	$\begin{array}{\|l} \hline \text { EN60730-1 } \\ \text { UL } 873 \end{array}$	250 V	$\begin{aligned} & \text { 10(10) A } \\ & \text { 12A 12FLA } \\ & \text { 72LRA } \\ & \hline \end{aligned}$	8(4) A 8A 2FLA 12LRA	8(4)A 8A 2FLA 12LRA	8(4)A 8A 2FLA 12LRA	$\begin{aligned} & \text { 10(10) A } \\ & \text { 12A 12FLA } \\ & \text { 72LRA } \end{aligned}$
MD33D2***0	$\begin{array}{\|l} \hline \text { EN60730-1 } \\ \text { UL } 873 \end{array}$	250 V	$\begin{aligned} & \text { 12(10) A } \\ & \text { 12A 12FLA } \\ & \text { 72LRA 2hp } \end{aligned}$	8(4) A 8A 2FLA 12LRA	8(4)A 8A 2FLA 12LRA	8(4)A 8A 2FLA 12LRA	$\begin{aligned} & \text { 12(2) A } \\ & \text { 12A 5FLA } \\ & \text { 30LRA } \end{aligned}$
MD33D3***0	$\begin{aligned} & \left\lvert\, \begin{array}{l} \text { EN60730-1 } \\ \text { UL } 873 \end{array}\right. \end{aligned}$	250 V	$\begin{aligned} & \text { 12(2) A } \\ & \text { 12A 5FLA } \end{aligned}$ 30LRA	8(4) A 8A 2FLA 12LRA	$\begin{aligned} & \text { 8(4)A } \\ & \text { 8A 2FLA } \end{aligned}$ 12LRA	8(4)A 8A 2FLA 12LRA	$\begin{aligned} & \text { 10(10) A } \\ & \text { 12A 12FLA } \\ & \text { 72LRA } \\ & \hline \end{aligned}$
MD33D4***0	$\begin{aligned} & \left\lvert\, \begin{array}{l} \text { EN60730-1 } \\ \text { UL } 873 \end{array}\right. \end{aligned}$	250 V	$\begin{aligned} & \text { 10(10) A } \\ & \text { 12A 12FLA } \\ & \text { 72LRA } \\ & \hline \end{aligned}$	8(4) A 8A 2FLA 12LRA	$\begin{aligned} & \text { 8(4)A } \\ & \text { 8A 2FLA } \end{aligned}$ 12LRA	8(4)A 8A 2FLA 12LRA	$\begin{aligned} & \text { 12(2) A } \\ & \text { 12A 5FLA } \\ & \text { 30LRA } \end{aligned}$
MD33D5***0	$\begin{aligned} & \hline \text { EN60730-1 } \\ & \hline \text { UL } 873 \end{aligned}$	250 V	$\begin{aligned} & \text { 12(10) A } \\ & \text { 12A 12FLA } \\ & \text { 72LRA 2hp } \end{aligned}$	8(4) A 8A 2FLA 12LRA	8(4)A 8A 2FLA 12LRA	$\begin{aligned} & \text { 8(4)A } \\ & \text { 8A 2FLA } \\ & \text { 12LRA } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 10(10) A } \\ & \text { 12A 12FLA } \\ & \text { 72LRA } \\ & \hline \end{aligned}$

4.1 Dimensions

Appearance and ergonomics:
The appearance has been designed to fit in harmoniously with the new lines of the refrigeration units.
The main characteristic is its compactness: the dimensions are in fact $34.4 \times 76.2 \times 65 \mathrm{~mm}$, and $34.4 \times 76.2 \times 79 \mathrm{~mm}$ for the version with traditional transformer. The drilling templates for both versions are $29 \times 71 \mathrm{~mm}$.

Key

1. version $\mathrm{O}, \mathrm{L}, \mathrm{H}$;
2. version E, A;
3. drilling template $71 \times 29 \mathrm{~mm}$

Fig. 4.a

4.2 Electrical specifications

Power supply	voltage				power		
	E:	$230 \mathrm{~V} \sim 50 / 60 \mathrm{~Hz}$;			$3 \mathrm{VA}, 25 \mathrm{~mA} \sim \max$		
	A:	$115 \mathrm{~V} \sim 50 / 60 \mathrm{~Hz}$;			$3 \mathrm{VA}, 50 \mathrm{~mA} \sim \max$		
Insulation guaranteed by the power supply	voltage				power		
	E, A:	insulation from very low voltage parts insulation from relay outputs for model E, A, for I, L, M, N connections only insulation from relay outputs for model E, A, for A, B, C, D, E, F, G, H connections only			reinforced; 6 mm air, 8 mm surface; 3750 V insulation basic; 3 mm air, 4 mm surface; 1250 V insulation basic; 3 mm air, 4 mm surface; 1250 V insulation		
Inputs	S1	NTC or PTC, depending on the model					
	S2	NTC or PTC, depending on the model					
	$\begin{aligned} & \mathrm{DII} \\ & \text { S3 } \end{aligned}$	voltage-free contact, contact resistance $<10 \Omega$, closing current 6 mA NTC or PTC depending on the model					
	$\begin{aligned} & \mathrm{DI} 2 \\ & \mathrm{~S} 4 \\ & \hline \end{aligned}$	voltage-free contact, contact resistance $<10 \Omega$, closing current 6 mA NTC or PTC depending on the model					
	Maximum distance between probes and digital inputs less than 10 m Note: in the installation, keep the power supply and load connections separate from the probe, digital inputs, repeater display and supervisor cables.						
Type of probe	Standard Carel NTC $10 \mathrm{k} \Omega$ at $25^{\circ} \mathrm{C}$, range $-50 \mathrm{~T} 90^{\circ} \mathrm{C}$ measurement error: $1{ }^{\circ} \mathrm{C}$ in the range $-50 \mathrm{~T} 50^{\circ} \mathrm{C}$ $3{ }^{\circ} \mathrm{C}$ in the range $+50 \mathrm{~T} 90^{\circ} \mathrm{C}$						
	High temperature NTC$\begin{aligned} & 50 \mathrm{k} \Omega \text { at } 25^{\circ} \mathrm{C} \text {, range }-40 \mathrm{~T} 150{ }^{\circ} \mathrm{C} \\ & \text { measurement error: } 1.5^{\circ} \mathrm{C} \text { in the range }-20 \mathrm{~T} 115^{\circ} \mathrm{C} \\ & \qquad 4^{\circ} \mathrm{C} \text { in the range outside of -20T } 115^{\circ} \mathrm{C} \end{aligned}$						
	Standard Carel PTC 985Ω at $25^{\circ} \mathrm{C}$, range $-50 \mathrm{~T} 150^{\circ} \mathrm{C}$ (specific model) measurement error: $2^{\circ} \mathrm{C}$ in the range $-50750^{\circ} \mathrm{C}$ $40^{\circ} \mathrm{C}$ in the range $+50 \mathrm{~T} 150^{\circ} \mathrm{C}$						
Relay outputs	depending on the model						
	modello$\operatorname{RRxxxx}(E, A)(P, Q, S, U, W,,, X, Y, Z) \times x x$		$\begin{aligned} & \text { relè } \\ & \text { R2 }\left(^{*}\right) \end{aligned}$	$\int_{5(1) A^{\text {EN60730-1 }} 250 \mathrm{~V} \sim}$	cicli di manovra 100000	$$	cicli di manovra 30000
			R3(*)	5 (1) A	100000	5A res 1FLA 6LRA C300	30000
	IRxxxx(E,A)(N,R,C,B,A,M,L,T)xxx IRxxxx(0,L,H)(N,R,C,B,A,M,L,T)xxx IRxxxx(0,L,H)(H,I,E,F,G,K,O,O,W))xxx		$\begin{aligned} & \mathrm{R1} 1, \mathrm{R} 2 \\ & \mathrm{R2}, \mathrm{R3}, \mathrm{R4} \\ & \left.\mathrm{R2}, \mathrm{R3}, \mathrm{R4})^{*}\right) \\ & \hline \end{aligned}$	8 (4) A su N.O. 6 (4) A su N.C. 2 (2) A su N.O. e N.C.	100000	8A res 2FLA 12LRA C300	30000
	IRxxxx(E,A)(P,Q,S,U,U,V,X,Y,Z)xxx IRxxxx (0,L,H) (N,R,C,B,B,A,M,L,T) $)$ xxx		$\begin{aligned} & \hline \mathrm{R1} \\ & \left.\mathrm{R1}{ }^{*}\right) \\ & \hline \end{aligned}$	12 (2) A su N.O. e N.C.	100000	12A res 5FLA 30LRA C300	30000
	$\overline{\operatorname{Rxxxx}}(0, L, H)(H, I, E, F, G, K, O, W)) x x x$		R1	10 (10) A	100000	12A res 12FLA 72LRA Toff minimum 60 seconds	30000
	(*): relay not suitable for fluorescent loads (neon lights, ...) that use starters (ballasts) with phase-shift capacitors. Fluorescent lamps with electronic control devices or without phase-shift capacitors can be used, within the operating limits specified for each type of relay.						
	insulation from very low voltage parts reinforced; 6 mm air, 8 mm surface; 3750 V insulation insulation between the relay outputs indipendent basic; 3 mm clearance, 4 mm creepage; 1250 V insulation						

IRxxC(0,7) H (N,R,C,B) (0,2)xx
Maximum total current on terminal 3: 12 A

$\operatorname{IRxxF}(0,7)(E, A)(N, R, C, B)(0,1,2,3,5) x x$
Maximum total current on terminal 1: 12 A

$\operatorname{IRxxF}(0,7)(0, L)(N, R, C, B)(0,2) x x$
Maximum total current on terminal 3 : 12 A

IRxxM(0,7) (E,A,0) (N,R,C,B) (0,1,2,3,5)xx (NO R1)
IRxxM(0,7) (E,A) (A,M,L,T) (0,1,2,3,5)xx

IRxxxxExxxx: $230 \mathrm{~V} \sim 25 \mathrm{~mA} \sim \max$
IRxxxAxxx:
$115 \mathrm{~V} \sim 50 \mathrm{~mA} \sim \max$
IRxxxAxxxx: $115 \mathrm{~V} \sim 50 \mathrm{~mA} \mathrm{\sim} \sim \max$
IRxxMx0(N,R,C,B)xxx: $12 \mathrm{~V} \sim 300 \mathrm{~mA} \sim \max , 12 \ldots 18 \mathrm{Vdc} 300 \mathrm{mAdc} \max$
$\operatorname{IRxxC}(0,7)(0, L)(N, R, C, B)(0,2) x x$
Maximum total current on terminal $3: 12 \mathrm{~A}$

IRxxF(0,7) H (N,R,C,B)(0,2)xx
Maximum total current on terminal 3: 12 A

IRxxM(0,7) (L) (N,R,C,B) (0,2)xx (NO R1)
IRxxM(0,7) (0,L) (A,M,L,T) (0,2)xx

IRxxS(0,7) (E,A) (N,R,C,B) (0,1,2,3,5)xx (NO R2)
IRxxS(0,7) (E,A) (A,M,L,T) (0,1,2,3,5)xx
Maximum total current on terminal 1:12 A

IRxxS(0,7) H (A,M,L,T) (0,2) xx
Maximum total current on terminal 3: 12 A

IRxxY(0,7) (E,A) (N,R,C,B) (0,1,2,3,5)xx (NO R3)
IRxxY(0,7) (E,A) (A,M,L,T) (0,1,2,3,5)xx
Maximum total current on terminal 1:12 A

IRxxY(0,7) H (N,R,C,B) (0,2)xx (NO R3)
$\operatorname{IRxxY}(0,7) \mathrm{H}(\mathrm{A}, \mathrm{M}, \mathrm{L}, \mathrm{T})(0,2) \mathrm{xx}$
Maximum total current on terminal 3 : 12 A

IRxxS(0,7) (E,A) (P,Q,S,U) (0,1,2,3,5)xx (NO R2)
IRxxS(0,7) (E,A) (V,X,Y,Z) (0,1,2,3,5)xx
Maximum total current on terminal 5: 12 A

IRxxS(0,7) (0,L) (N,R,C,B) (0,2)xx (NO R3)
IRxxS $(0,7)(0, L)(A, M, L, T)(0,2) x x$
Maximum total current on terminal 3 : 12 A

$\operatorname{IRxxY}(0,7)(E, A)(P, Q, S, U)(0,1,2,3,5) x x$
Maximum total current on terminal 5: 12 A

$\operatorname{IRxxY}(0,7)(0, L)(N, R, C, B)(0,2) x x(N O R 3)$
$\operatorname{IRxxY}(0,7)(0, L)(A, M, L, T)(0,2) x x$
Maximum total current on terminal 3 : 12 A

5.1 Dimensions

See "Dimensions" for the chapter on the ir33.

5.2 Electrical specifications

Clock	Error at $25^{\circ} \mathrm{C}$: $\quad \pm 10 \mathrm{ppm}(\pm 5.3 \mathrm{~min} / \mathrm{year}$)
	Error in the temperature range $-10 \mathrm{~T} 60^{\circ} \mathrm{C}$: $\quad-50 \mathrm{ppm}(-27 \mathrm{~min} /$ year $)$
	Ageing: $< \pm 5 \mathrm{ppm}$ ($\pm 2.7 \mathrm{~min} / \mathrm{year}$)
	Discharge time: typically 6 months (8 months maximum)
	Recharge time: typically 5 hours (<8 hours maximum)
Operating conditions	$-10 \mathrm{~T} 60^{\circ} \mathrm{C}$; <90\% RH non-condensing
Storage conditions	$-20770^{\circ} \mathrm{C}$; <90\% RH non-condensing
Front panel index of protection	assembly on smooth and indeformable panel with IP65 gasket
Environmental pollution	2, normal situation
PTI of insulating materials	printed circuits 250, plastic and insulating materials 175
Period of stress across the insulating parts	long
Category of resistance to fire	category D and category B (UL 94-V0)
Class of protection against voltage surges	category II
Type of action and disconnection	1B relay contacts (micro-disconnection)
Construction of the control device	electronic control device incorporated
Classification according to protection against electric shock	class II when appropriately integrated
Device designed to he hand-held or integrated into equipment designed to be hand-held	no
Software class and structure	class A
Cleaning the front panel of the instrument	only use neutral detergents and water
Serial interface for CAREL network	External, available in all models
Interface for repeater display	External, available in models with power supplies H, L and 0
Maximum distance between interface and display	10 m
Programming key	Available in all models

Tab. 5.a

The IR33 Power range fitted with the standard Carel NTC probe is compliant with standard EN 13485 on thermometers for measuring the air temperature in applications on units for the conservation and sale of refrigerated, frozen and deep-frozen food and ice cream. Designation of the instrument: EN13485, air, S, A, 1, -50T90² . The standard Carel NTC probe is identifiable by the printed laser code on "WP" models, or the code "103AT-11" on "HP" models, both visible on the sensor part.
"RELE 2" MODELS WITH "DEPENDENT" COMMON Modello S senza ausiliario

IR33S*(A,E) (H,I,E,F) (A,B,C,D)*

Modello S con ausiliario
IR33S* $(A, E)(G, O, K, W)(A, B, C, D)^{*}$

Modello Y senza ausiliario IR33 ${ }^{*}(A, E)(H, I, E, F)(A, B, C, D)^{*}$

Modello Y con ausiliario
IR33Y*(A,E) (G,O,K,W) (A,B,C,D)*

Modello F senza ausiliario
IR33F* $(A, E)(H, I, E, F)(A, B, C, D)^{*}$

"RELE 2" MODELS WITH "INDEPENDENT" COMMON

Modello S con ausiliario
IR33S*(A,E) (G,O,K,W) (E,F,G,H)*

Modello Y senza ausiliario

$$
\text { IR33 }{ }^{*}(A, E)(H, I, E, F)(E, F, G, H)^{*}
$$

Modello Y con ausiliario

IR33Y*(A,E) (G,O,K,W) (E,F,G,H)*

Modello F senza ausiliario

IR33F*(A,E) (H,I,E,F) (E,F,G,H)*

6.2 Technical specifications

	Model	Voltage				Power		
Power supply	$\bmod \mathrm{H}$: $\bmod \mathrm{L}$: $\bmod 0$:	$\begin{aligned} & 115 \ldots . .230 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz} \\ & 12 \ldots 24 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 12 \ldots 30 \mathrm{Vdc} \\ & 12 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 12 \ldots . .18 \mathrm{Vdc} \end{aligned}$				$6 \mathrm{VA}, 50 \mathrm{~mA} \sim \max$ 3 VA, $300 \mathrm{~mA} \sim / \mathrm{mAdc}$ max Use only SELV power supply		
Insulation guaranteed by the power supply	$\bmod \mathrm{H}$:	insulation in reference to very low voltage parts				reinforced 6 mm clearance, 8 creepage 3750 V insulation		
		insulation from relay outputs				basic 3 mm clearance, 4 creepage 1250 V insulation		
	$\bmod 0, \mathrm{~L}$:	insulation in reference to very low voltage parts				da garantire esternamente con trasformatore di sicurezza (SELV)		
		insulation from relay outputs				reinforced 6 mm clearance, 8 creepage 3750 V insulation		
Input	S1 (probe 1)	NTC (IRxxx0xxxxx) o NTC e PTC (IRxxx7xxxxx)						
	S2 (probe 2)	NTC (IRxxx0xxxxx) o NTC e PTC (IRxxx7xxxxx)						
	$\begin{aligned} & \hline \mathrm{DII} \\ & \mathrm{S3} \text { (probe 3) } \\ & \hline \end{aligned}$	free contact, contact resistance $<10 \Omega$, closing current 6 mA NTC (IRxxx0xxxxx) o NTC e PTC (IRxxx7xxxxx)						
	$\begin{aligned} & \hline \text { DI2 } \\ & \text { S4 (probe 4) } \\ & \hline \end{aligned}$	free contact, contact resistance $<10 \Omega$, closing current 6 mA NTC (IRxxx0xxxxx) o NTC e PTC (IRxxx7xxxxx)						
	Maximum ditance of probes and digital inputs less than 10 m . Nota:during installation keep the power and loads connection separate from probe cables, digital inputs, repeater display and supervisory system.							
Probe type	NTC std. CAREL	$10 \mathrm{k} \Omega \mathrm{a} 25^{\circ} \mathrm{C}$, range da $-50 \mathrm{~T} 90^{\circ} \mathrm{C}$						
		measurement error:				$1^{\circ} \mathrm{C}$ in the $-50750^{\circ} \mathrm{C}$ range		
		$50 \mathrm{k} \Omega \mathrm{a} 25^{\circ} \mathrm{C}$, range da $-40 \mathrm{~T} 150^{\circ} \mathrm{C} \quad 33^{\circ} \mathrm{C}$ in the $-50 \mathrm{~T} 90^{\circ} \mathrm{C}$ range						
	NTC high temperature							
		measurement error				$1,5^{\circ} \mathrm{C}$ in the $-20 \mathrm{~T} 115^{\circ} \mathrm{C}$ range		
						$4^{\circ} \mathrm{C}$ nel range esterno a	$-20 T 115^{\circ} \mathrm{C}$	
	PTC std. CAREL (specific model)	985Ω a $25^{\circ} \mathrm{C}$, range da $-50 \mathrm{~T} 150^{\circ} \mathrm{C}$						
		measurement error				$2^{\circ} \mathrm{C}$ in the $-50750^{\circ} \mathrm{C}$ range		
						$4^{\circ} \mathrm{C}$ in the $-50 \mathrm{~T} 150^{\circ} \mathrm{C}$ range		
Relay outputs	Rating x don the model $I R x x(S, Y, F, C, C) x(0, L, H)(H, I, E, G, K, \mathrm{~K}, \mathrm{O}, \mathrm{W}) \mathrm{xxx}$							
	EN 60730-1				UL 873			
	relè R1	$\frac{250 \mathrm{Vac}}{\mid 10(10) \mathrm{A}}$	operating cycles		250 Vac		operating cycles	
			100000		12A resistive 12 FLA 72 LR, Toff minimum 60 seconds(*), pilot duty C 300		30000	
	R2(**)	8 (4)A	100000		8 A resistive 2 FLA 12 LRA, pilot duty C300		30000	
	R3(**)	8 (4)A	100000		8 A resistive 2 FLA 12 LRA, pilot duty C300		30000	
	R4(**)	8 (4)A	100000		8A resistive 2 FLA 12 LRA, pilot duty C300		30000	
	insulation from very low voltage parts reinforced					rinforzato: 6 mm in aria, 8 superficiali		
	insulation between the relay outputs indipendent 3750 V isolamento principale: 3 mm in aria, 4 supericiali							
	(*): between the OFF status and the following ON status of the relay at least 1 minute have to elapse. $\left({ }^{* *}\right)$: Relay not suitable for fluorescent loads (neon lights, ...) that use starters (ballasts) with phase-shift capacitors. Fluorescent lamps with electronic control devices or without phase-shift capacitors can be used, within the operating limits specified for each type of relay.							
Connections	Type of connection				$\begin{aligned} & \text { Cross-section } \\ & \text { for wires from } 0,5 \text { to } \\ & 2,5 \mathrm{~mm}^{2} \end{aligned}$		Max. current	
	Model	Relay	P Supply Probes				12 A	
	$\begin{array}{\|l\|} \hline 0 \\ 2 \\ \hline \end{array}$	screw/faston removablei	screw removable	screw removable				
	the installer has to provide the correct dimensioning of the power supply and cable connection between the instruments and the loads. Depending on the model, the maximum current in the common terminals 1,3 or 5 is 12 A . When using the controller at maximum operating temperature and full load, use cables featuring a maximum operating temperature of $105^{\circ} \mathrm{C}$ at least.							
Case	plastic		Models: O, L, H			dimensions	$34,4 \times 76,2 \times 79 \mathrm{~mm}$	

		mount-in depth $70,5 \mathrm{~mm}$
Mounting	smooth and stiff panel using side fastening brackets, pressed until stop	
	drilling template	dimensions $28.8 \pm 0.2 \times 70.8 \pm 0.2 \mathrm{~mm}$
Display	digits	3 digit LED
	display range	from -99 to 999
	operating status	indicated by graphic icons on the display
Keypad	4 rubber silicon buttons	
No options	modH	
Infrared receiver	\bmod I,F,K,W	
Clock with backup battery	$\bmod E, F, O, W$	
Alarm or auxiliary relay	G,K,O,W	
Custom param. or firmware	IRccxxxxxnx; cc customer; n custom made parameters list	
Package	IRxxxxxxxxi: blank singol; 1 or 5 multiple; K kit with probes	
Buzzer	available on all the models	
Clock	error at $25^{\circ} \mathrm{C}$	\pm 10 ppm ($\pm 5.3 \mathrm{~min} / \mathrm{year})$
	error in the temperature range - $10 \mathrm{~T} 60^{\circ} \mathrm{C}$	-50 ppm (-27 min/year)
	ageing	$< \pm 5 \mathrm{ppm}$ ($\pm 2.7 \mathrm{~min} / \mathrm{year}$)
	discharge time	typical 6 months (max. 8 months)
	recharge time	typical 5 hours (<max. 8 hours)
Operating temperature	$-10 T 60^{\circ} \mathrm{C}$ for the versions IRxxxx(0,L)(H,I,E,F,G,K,K,O,W)xx $-10 T 50^{\circ} \mathrm{C}$ for the versions IRxxxx(H)(H,I,E,F,G,K,O,W)xx	
Operating humidity	<90\% r.H. non-condensing	
Storage temperature	$-20 \mathrm{~T} 70{ }^{\circ} \mathrm{C}$	
Storage humidity	<90\% relative humidity. non-condensing	
Front panel degree of protection	montaggio a pann. liscio e indeform. con guarniz. IP65	
Control pollution status	2 (normal situation)	
PTI of the insulating material	printed circuit board 250, insulation 175	
Period of electric stress across insulating parts	long	
Heat and fire resistance category	category D and category B (UL 94-V0)	
Class of protection against voltage surges	category II	
Type of disconnection or interruption	1.B relay contacts (micro-disconnection)	
Construction of control	incorporated control, electronically	
Classification according to protection against electric shock	Class II, by appropriate incorporation	
The control is either to be hand-held or is intented for a hand-held equipment	no	
Software class and structure	Class A	
Front panel cleaning	use only neutral detergents and water	
Serial interface for CAREL network	external, available on all models	
Interface for repeater display	external, available on IRxxxx (0,L,H)xxxx	
Maximum distance between interface and display	10 m	
Programming key	available on all models	

IRxxS*H (G,K,O,W)*0
Corrente massima totale su terminale 3: 12A
Maximum current on terminal 3: 12A

IRxxC* H (H,I,E,F)*0
IRxxF* H (H,I,E,F)*0 senza/without R4
Corrente massima totale su terminale 3: 12A
Maximum current on terminal 3: 12A

IRxxS* (L,0) (G,K,O,W) *0
IRxxS* (L,0) (H,I,E,F)*0 senza/without R2
Corrente massima totale su terminale 3: 12A
Maximum current on terminal 3: 12A

IRxxC* (L,0) (H,I,E,F)*0
IRxxF* (L,0) (H,I,E,F)*0 senza/without R4
Corrente massima totale su terminale 3: 12A
Maximum current on terminal 3:12A

RxxxxLxxx: $\begin{aligned} & 12 \ldots 18 \mathrm{VDC}, 300 \mathrm{mADC} \text { max } \\ & 12 / 24 \mathrm{~V} \sim, 300 \mathrm{~mA} \sim \max \end{aligned}$
$12 \ldots 30 \mathrm{VDC}, 300 \mathrm{mADC}$ max

IRxxY*H (G,K,O,W)*0
IRxxY*H (H,I,E,F)*O senza/without R3
Corrente massima totale su terminale 3: 12A
Maximum current on terminal 3:12A

$115 \ldots 230 \mathrm{~V} \sim 50 \mathrm{~mA} \sim \max$

IRxxM*(L,0) (G,K,O,W)*0

IRxxY* (L,0) (G,K,O,W) *0
IRxxY* (L,0) (H,I,E,F) *0 senza/without R3
Corrente massima totale su terminale 3: 12A
Maximum current on terminal 3:12A

Fig. 6.a

7.1 Dimensions

The dimensions of the ir33DIN are 60x111x70.4 mm for all versions, with the drilling template measuring $40 \times 70 \mathrm{~mm}$.

DIN rail assembly

Fig. 7.a

7.2 Electrical specifications

Connections	Type of connection fixed screw 16A plug-in for screw blocks spade with crimped contact	Cross-sections for cables from 0.5 to 2.5 mm 2 for cables from 0.5 to 2.5 mm 2 for cables from 0.5 to 2.5 mm 2	Maximum current 12 A 12 A 12 A
	Wire cross-section for probes and digital inputs	0.5 to 2.5 mm 2 (from 20 to 13 A	
	Wire cross-section for power supply and loads	1.5 to 2.5 mm 2 (from 15 to 13 Al	
	The correct sizing of the power and connection cables between the instrument and the loads is the responsibility of the installer. In the max load and max operating temp. conditions, the cables used must be suitable for operation up to $105^{\circ} \mathrm{C}$.		
Case	plastic dimensions: $111 \times 70.4 \times 60 \mathrm{~mm}$		
Assembly	DIN rail: using built-in fastening system		
	drilling template for front panel: dimensions $45 \times 70 \mathrm{~mm}$		
Display	digits: 3 digit LED		
	display: from -99 to 999		
	operating status: indicated with graphic icons on the display		
Keypad	4 silicone rubber buttons		
Infrared receiver	available depending on the model		
Clock with backup battery	available depending on the model		
Buzzer	available in all models		
Clock	Error at $25^{\circ} \mathrm{C}$: $\quad \pm 10 \mathrm{ppm}(\pm 5.3 \mathrm{~min} /$ year $)$		
	Error in the temperature range $-10 \mathrm{~T} 60{ }^{\circ} \mathrm{C}$: $\quad-50 \mathrm{ppm}(-27 \mathrm{~min} / \mathrm{year})$		
	Ageing: $< \pm 5 \mathrm{ppm}$ ($\pm 2.7 \mathrm{~min} / \mathrm{year}$)		
	Discharge time: typically 6 months (8 months maximum)		
	Recharge time: typically 5 hours (<8 hours maximum)		
Operating conditions	power supply $\mathrm{O}, \mathrm{L}, \mathrm{H}:-10 \mathrm{~T} 55^{\circ} \mathrm{C} ;<90 \%$ RH non-condensing power supply $\mathrm{E}, \mathrm{A}: \quad-10 \mathrm{~T} 50^{\circ} \mathrm{C}$; $<90 \% \mathrm{RH}$ non-condensing		
Storage conditions	$-20 \mathrm{~T} 70^{\circ} \mathrm{C} ;<90 \%$ RH non-condensing		
Front panel index of protection	front panel IP40, complete controller IP20		
Environmental pollution	2, normal situation		
PTI of insulating materials	printed circuits 250, plastic and insulating materials 175		
Period of stress across the insulating parts	long		
Category of resistance to fire	category D and category B (UL 94-V0)		
Class of protection against voltage surges	category II		
Type of action and disconnection	1B relay contacts (micro-disconnection)		
Construction of the control device	electronic control device incorporated		
Classification according to protection against electric shock	class II when appropriately integrated		
Device designed to he hand-held or integrated into equipment designed to be hand-held	no		
Software class and structure	class A		
Cleaning the front panel of the instrument	only use neutral detergents and water		
Serial interface for CAREL network	Built-in, available in all models, upon request		
Interface for repeater display	Built-in, available in all models, upon request		
Maximum distance between interface and display	10 m		
Programming key	Available in all models		

EN13485 certification

The ir33 platform range fitted with the standard Carel NTC probe is compliant with standard EN 13485 on thermometers for measuring the air temperature in applications on units for the conservation and sale of refrigerated, frozen and deep-frozen food and ice cream.
Designation of the instrument: EN13485, air, S, A, $1,-50+90^{\circ} \mathrm{C}$. The standard Carel NTC probe is identifiable by the printed laser code on "WP" models, or the code "103AT-11" on "HP" models, both visible on the sensor part.

DN33 (S,Y,F)*0, L (N-R-C-B)*0 senza/ without R3 DN33 (S,T)*0,L (A-M-L-T)*0

DN33 (S,Y,F)*0,L (H-I-E-F)*0 senza/ without R3
DN33 (S,T)*0,L (G-K-O-W)*0

DN33(S,Y,F)*H (N-R-C-B)*0 senza/ without R3 DN33(S,Y)*H (A-M-L-T)*O

$\frac{\text { EN60730-1 }}{\text { UL } 873}{ }^{250}$	$\mathrm{R1}^{10(10) \mathrm{A}}$	$\mathrm{R}^{10(4){ }^{\text {A }}}$							
	12A 12FLA 72L	12A 5FLA 30L							
$\theta^{R 1} \frac{0}{2} R 2$									
			: tLAN						
			\|24 L L L L + - +						
\dagger K... KEY : $:$: - serial interface \longrightarrow -									
1 2 3 4 5 6 7 8 9 10 11 12									
Pover $115 / 230 \mathrm{~V} \sim 50 \mathrm{~mA} \mathrm{\sim max}$									

DN33(S,Y,F)* (E-A) (N-R-C-B)*0 senza/without R3 DN33(S,Y,F)* (E-A) (A-M-L-T)*0

${ }_{\text {EN60730-1 }}{ }_{250} \mathrm{~V}$		${ }_{\text {R }}{ }_{10}^{10(4)}$ A					
θ^{R}	洪 $R 2$						
		$\stackrel{\text { AUX1 }}{ }=1$		GND 9			
23 22	12019	151413					
				KEY			
1 2 3 4 5 6 7 8 9 10 11 12 							

DN33(C)*(0,L) (N-R-C-B)*0 senza/without R4 DN33(H)*(0,L) (N-R-C-B)*0

DN33(C,M)*(0,L) (H-I-E-F)*0 senza/ without R3

DN33(C)*H (N-R-C-B)*0 senza/without R4 DN33(H)*H (N-R-C-B)*0

POWER
SUPPLY
$115 / 230 ~ V \sim 50 m A \sim ~ m a x ~$

CAREL S.p.A.

Via dell'Industria, 11-35020 Brugine - Padova (Italy)
Tel. (+39) 049.9716611 - Fax (+39) 049.9716600 e-mail: carel@carel.com - www.carel.com

